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A distribution shift is when a data distribution 
changes from what is expected
● In machine learning, a distribution shift is 

when a testing distribution no longer 

matches the training distribution

𝑷𝒕𝒆𝒔𝒕 𝒙 ≠ 𝑷𝒕𝒓𝒂𝒊𝒏 𝒙

● Under distribution shift, the patterns learned 

by a model might not be present in 𝑷𝒕𝒆𝒔𝒕
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Distribution shifts are ubiquitous
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Exemplar Real-World Distribution Shift datasets from Stanford WILDS benchmarks overview

● Any changes in a current data generating environment can cause shifts

● Applying a model to a new domain is almost always a shift



Knowing what has changed under a shift allows us 
to more effectively respond to mitigate the shift

● Problem: Most prior works focus on 
only detecting a shift and do not help 
with “How should I respond?”

● To most effectively mitigate the shift, an 
operator needs to know what changed 

○ E.g, “Preferences of 18-25 year-olds changed” or 
“X feature of the data intake pipeline is broken”

● Our goal: Aid the operator by 
explaining how 𝑃()*  shifted to 𝑃+,+
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(retrieve 
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Operator 
Approval

A typical ML deployment cycle

Focus of this workFocus of prior works



Distribution shifts can be explained by hypothesizing 
how to map 𝑃!"# to 𝑃$%$

● Given two distributions  𝑃!"#, 𝑃$%$:

○  a transport map 𝑇(⋅), is a function which 
moves a point from 𝑃!"# to 𝑃$%$, such that  
𝑃&((!"#) ≈ 𝑃$%$

● If 𝑇 is interpretable, it can explain how 𝑃!"# 

shifted to 𝑃$%$
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𝑇 𝑥 = 𝒙 + [2,2]



We can leverage prior Optimal Transport work to find good 
interpretable mappings

● By relaxing alignment in Optimal Transport and restricting our possible 
mappings to be interpretable we get Intrinsically Interpretable Transport:

𝑇**& ≔ argmin&∈,$%& 𝔼(&"'$% 𝑐 𝒙, 𝑇 𝒙 + 𝜆	𝜙 𝑃& - , 𝑃$.!$ 	

● Ω012 can be defined based on context, or one can use our pre-defined 

mappings:   𝑘-sparse feature mappings or   𝑘-cluster mappings
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Ω!"#: A set of 
interpretable mappings 

Cost function: 𝑇 should 
retain as much of the 

original point as possible

Divergence: 𝑇 should 
align 𝑃! "  and 𝑃#$%# as 

much as possible

𝑇-./0123
456 𝑇-./0123

457𝑇08930245: 𝑇08930245;



Given(	 , )
𝑷𝒕𝒈𝒕𝑷𝒔𝒓𝒄

   
    

   

Baseline Mean 
Explain:

Proposed 
𝑘-sparse 
Explain:

   
 

Baseline 
Mean Explain:

Proposed 
𝑘-cluster 

Explain:

Oracle 
Shift from 
𝑷𝒔𝒓𝒄 to 
𝑷𝒕𝒈𝒕:

29K more 
entries

OT+!→+"
-./ = [-women, -men, +man, +people, -like]   which aligns 7.3% of non-toxic to toxic comments

OT+!→+"
-.01 = [OT2!→2"

-./ ] + [+trump, +just, +don’t, +black, -male]  which accounts for 11.61% of the shift

𝜇+!→+"   =  [+trump, -women, …...... , -bishops, -000, +hell, -day, -government, + race, -role, +sick]

Solve for 𝑘-
cluster 
maps

Solve for 𝑘-
sparse maps

Solve for
distribution 
translation 

maps

Are the features 
or samples 

interpretable?

𝑃𝒙→0 𝑃𝒙→4 𝑃𝒙→5 𝑃𝒙→6 𝑃𝒙→/𝑃𝒙

𝑃0

𝑃4

𝑃5

𝑃0 𝑃4 𝑃5 𝑃6 𝑃/Baseline 
Random 

Set 
Explain:

Proposed 
Distributiona

l 
Counterfactu

al Explain:

Clusterable

Samples are interpretable
(e.g., images)

Features are 
interpretable

(e.g., sales data)

Not 
Clusterable

𝑇)7

𝑇*7

𝑇

Our 
Methods

Are there 
clusters in the 

samples?

Methodology for solving for a shift explanation



𝑘-Sparse Feature Mappings can show how features 
moved along defined axes
● Ω!45"!.6 : Find a 𝑇 which yields the best alignment, while only moving points 

 along 𝑘 dimensions
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Oracle Shifts from	 𝑷𝒔𝒓𝒄 to 𝑷𝒕𝒈𝒕 𝑇,-./,0123 𝑇,-./,0124

Simple 
mean shift:

Complex 
conditional shift:



𝑘-Cluster Mappings can show how heterogenous 
subgroups have shifted
● Ω789:2;<6 : Find 𝑘-cluster-specific transport maps which maximizes alignment 

 between 𝑷𝑻(𝑷𝒕𝒈𝒕) and 𝑷𝒕𝒈𝒕

○ We can restrict per cluster transport maps to a specific class of transport functions
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𝑘-cluster mapping
𝑘 = 3

Oracle Shift from	 𝑷𝒔𝒓𝒄 to 𝑷𝒕𝒈𝒕 𝑘-cluster mapping
𝑘 = 6

Moving points by 
cluster-specific vector: 

𝑇 𝑪 = 𝒙+𝜹(𝑪) 
if 𝒙 ∈ 𝑪



𝑇))* can be used to gain actionable insights from 
explanations of complex shifts
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Example of 6-cluster mapping

● Using our 𝑘-cluster mappings Ω78A!$."6 , we can see how heterogenous 

groups (clusters) moved differently under a distribution shift

!! : [Age: 39.7, Edu: 10.2, Inc: 0.29]
!" : [Age: 36.6, Edu: 10.1, Inc: 0.10]

!#!" : [Age: 35.6, Edu: 12.9, Inc: 0.00]    !#!# : [Age: 29.7, Edu:   8.9, Inc: 0.03] 
!#!" →#$" : [Age: 32.1, Edu: 12.5, Inc: 0.01]    !#!# →#$# : [Age: 26.3, Edu:  9.0, Inc: 0.00]

!#!% : [Age: 56.3, Edu:    8.4, Inc: 0.13]   !#!& : [Age: 43.5, Edu: 12.1, Inc: 1.00]
!#!% →#$% : [Age: 53.7, Edu:    8.7, Inc: 0.01]   !#!& →#$& : [Age: 40.2, Edu: 11.9, Inc: 0.38]

Baseline Mean Shift Explanation:

" - Cluster Explanation (ours), " = $:

Baseline Feature 
Importance of Domain 
Classifier Explanation:

More FemaleMore Male

Income
Age

Education

Shap Value (impact on model output)

Fe
at

ur
e 

Va
lu

e

Insight           :
Income is largest 
predictor 
between M and F

1

Total Number of Clusters (!)

Tr
an

sp
or

t C
os

t

.5

1

1.5

Insight           :
The income 
difference is 
largest in !!! , 
middle-aged 
adults with a 
bachelor’s degree
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Using Ω-./01234 to compare male and female response to the US 1994 Census



Transport Maps can also explain distribution shifts in 
high-dimensional regimes (images)
● When raw features are not 

semantically meaningful, but 

samples are (e.g., images), we 

can use domain counterfactuals 

to understand a complicated 𝑇

● Distributional-Counterfactuals ≔

	 𝒙, 𝑇 𝒙 : 𝑥 ∼ 𝑃567, 𝑇 𝒙 ∼ 𝑃898
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Using StarGAN to show the difference between tissue samples across 5 hospitals

Baseline: Saliency Maps for Domain Classifier

Insight         :
There seems to be a difference in 
staining across hospitals

1 Insight        :
There is a clear difference in staining, and it seems to 
be unique to each hospital
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Baseline: Visual Inspection of Samples
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Thank you for listening!
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